
Meeting Technology Needs through Innovative Partnerships at NASA

Doug Comstock
Director, Innovative Partnerships Program Office - NASA

Military and Aerospace Programmable Logic Device (MAPLD) Conference 2008 September 17, 2008 Annapolis, Maryland

NASA Explores For Answers That Power Our Future

Inspire

Innovate

Discover

Inspiration + Innovation + Discovery = Future

Global Exploration Strategy

Human Civilization

Scientific Knowledge

Exploration Preparation

Global Partnerships

Economic Expansion

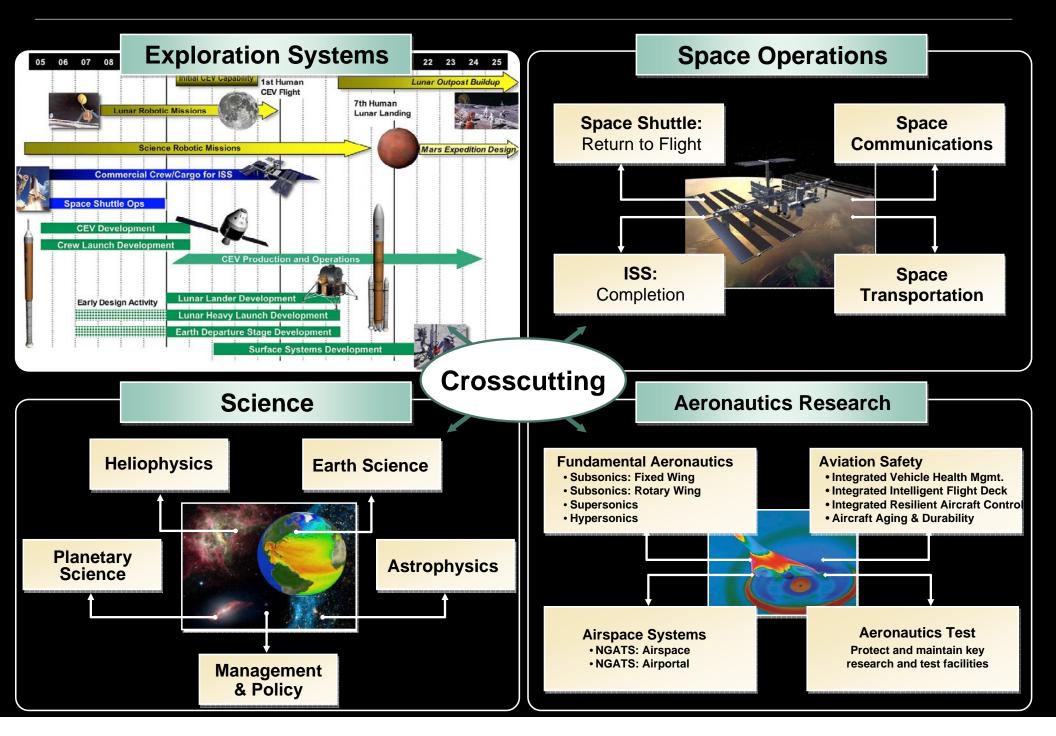
Public Engagement

Global Exploration Strategy

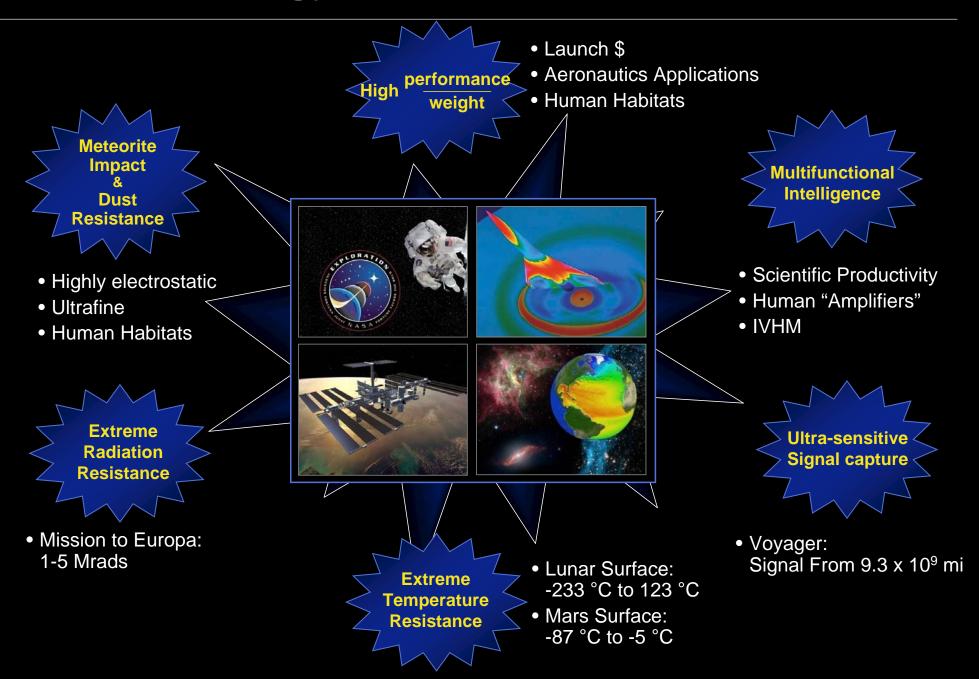
NASA Organizational Structure

Explorations Systems Mission Directorate

Science Mission Directorate



Space Operations Mission Directorate



Aeronautics Mission Directorate

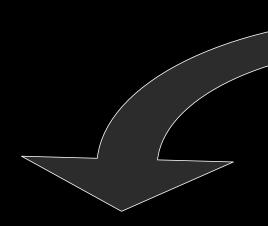
Agency Capability Roadmap

Technology In Extreme Environments

Innovative Partnerships Program

Matching Technology Needs with Technology Capabilities

Innovative Partnerships Program Elements

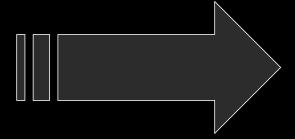


- Small Business Innovation Research (SBIR)
- Small Business
 Technology
 Transfer
 Research (STTR)
- IPP Seed Fund

- CentennialChallenges
- FAST
- InnovationTransfusion
- New Business Models

- Intellectual Property Management
- Technology Transfer
- New Innovative Partnerships

IPP Technology for Mission Directorates


Technology Needs

Communication

Innovative Partnerships Program

- SBIR/STTR
- Centennial Challenges
- Seed Fund
- Partnerships

Executed at the Field Centers

Technology Infusion

- Bridging the "Valley of Death"
- Narrow the gap and reduce risk
- Begin building bridges early

Mission Directorates

- Programs
- Projects

Executed at the Field Centers

SBIR/STTR: 3-Phase Program

PHASE I

- Feasibility study
- \$100K award
- 6 months duration (SBIR)
- 12 months duration (STTR)

PHASE II

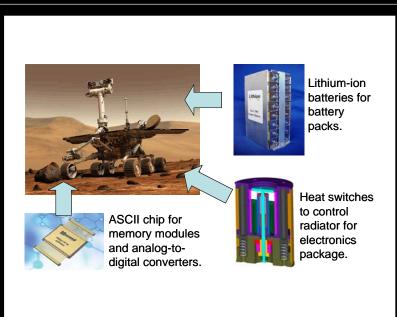
- Technology Development
- 2-Year Award
- Up to \$750K (SBIR/STTR)

SBIR	FY03	FY04	FY05	FY06	FY07	FY08
Millions of \$	107.3	107.5	110.0	105.6	99.8	103.7
Phase 1 Awards	267	312	291	267	259	TBD
Phase 2 Awards	155	139	142	186	130	TBD

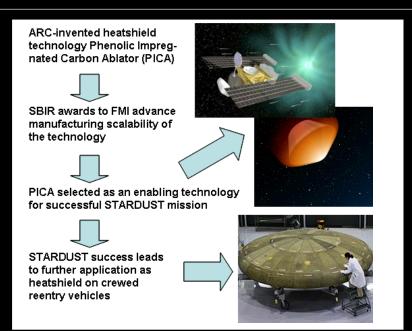
STTR	FY03	FY04	FY05	FY06	FY07	FY08
Millions of \$	6.4	12.9	13.2	12.3	12.0	12.5
Phase 1 Awards	45	40	35	27	25	TBD
Phase 2 Awards	18	26	17	22	18	TBD

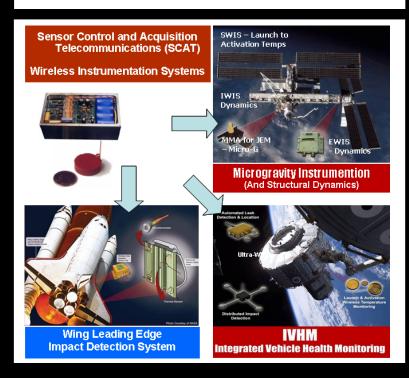
SBIR is 2.5% of extramural R&D, STTR is 0.3% of extramural R&D.

PHASE III

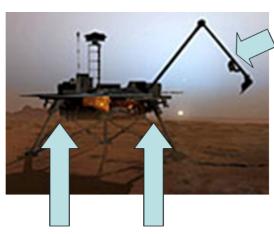

- Technology Infusion/Commercialization Stage.
- Use of non-SBIR Funds.
- Ability to award sole-source contracts without JOFOC based on specific SBIR authority – NASA and NASA primes.

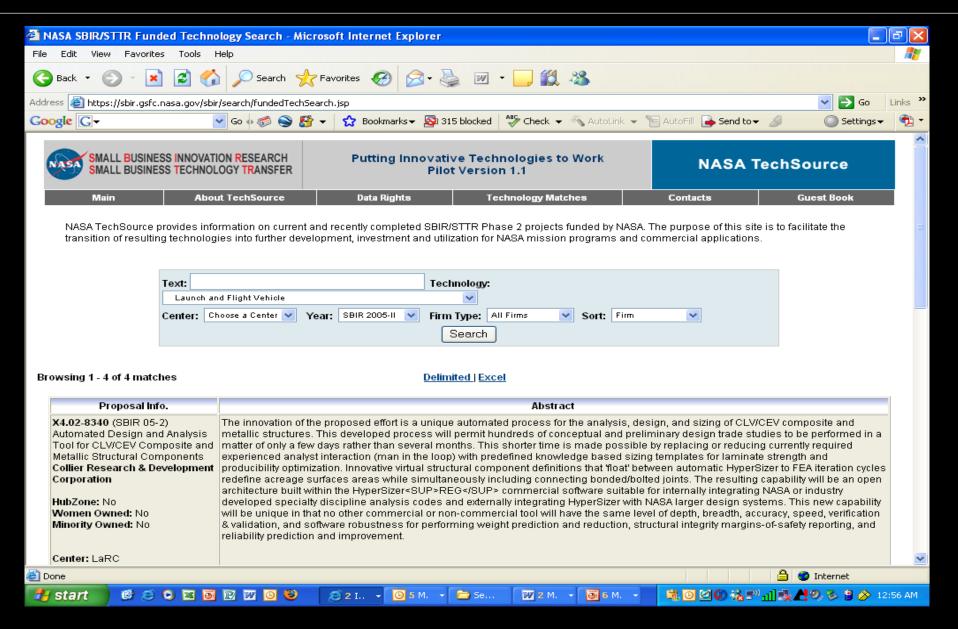
SBIR/STTR Taxonomy


- Avionics and Astrionics
- Biotechnology
- Communications
- Cryogenics
- Education
- Electronics
- Extravehicular Activity
- Information
- Manufacturing
- Materials
- Microgravity
- Power and Energy
- Propulsion
- Robotics
- Sensors and Sources
- Structures
- Thermal
- Verification and Validation



SBIR Technology Infusion Examples

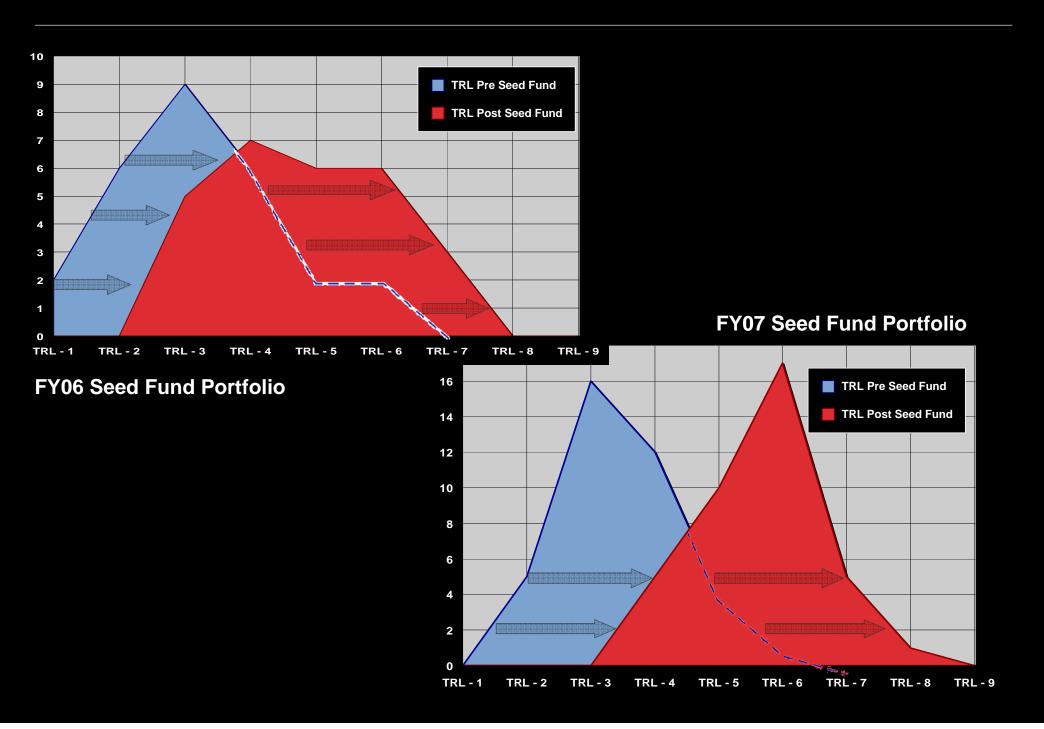




Icy Soil
Acquisition
Device
supplied by
Honeybee
Robotics, Inc.

Lithium ion batteries supplied by Yardney Technical Products, Inc. SpaceDev (formerly Starsys) contributed to the design of the Microscopy Electrochemistry and Conductivity Analyzer (MECA)

Technologies and Firms are Searchable



https://sbir.gsfc.nasa.gov/sbir/search/fundedTechSearch.jsp

IPP Seed Fund

- An annual process for selecting innovative partnerships to address technology barriers via cost-shared, joint-development projects.
- Enhances NASA's ability to meet the priority technology gaps of all four of NASA's Mission Directorates.
- The IPP Office at NASA HQ issues an annual Seed Fund call to all NASA Centers – they downselect and send to HQ for final selections.
- The Seed Fund operates through a collaboration of Center IPP Offices, NASA co-PI, and external co-PI.
- Proposals are evaluated against the following criteria:
 - Relevance/Value to NASA Mission Directorates.
 - Scientific/Technical merit and feasibility.
 - Leveraging of resources.
- In the last two years, an investment of \$19 million by IPP facilitated the generation of 81 partnerships and was leveraged by nearly a factor of four, providing a total of \$73 million for the advancement of critical technologies and capabilities for the Agency.

Seed Fund TRL Advancement

Demonstration Highlights

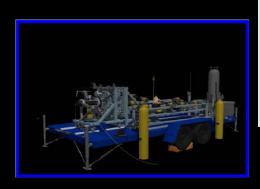
Cryostable **Low-cost Mirror** (Deep Space Missions)

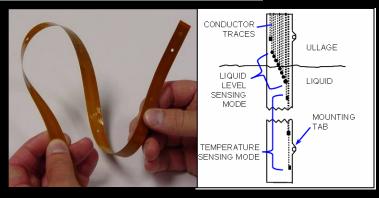
Inflatable **Human Habitat** (Human Lunar)

4D Flight Mgmt (NGATS)

Technology Demos

Li-Ion Battery for PLSS (Human EVA)

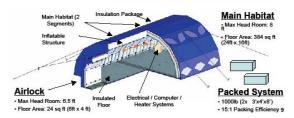



Inflatable **Decelerator** (AFL MARS and COTS)

> **Engine** (Aries 1 Upper Stage)

ISHM - Test Stand and J2X

Antarctic Habitat Demonstrator


Antarctic Habitat Demonstrator

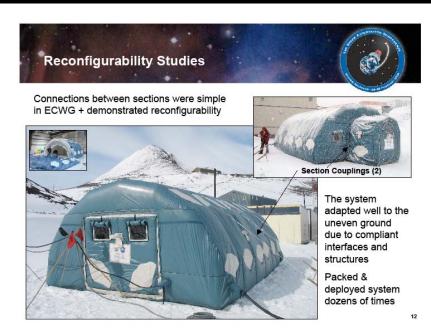
- NASA / NSF / ILC Dover Innovative Partnership Program (IPP)
- Test of expandable structures in Antarctic Analog to advance NASA knowledge base for lunar application
- Test of expandable structures to advance NSF knowledge and assess applicability to polar missions

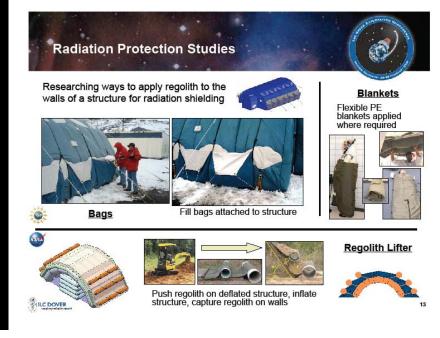
- · Reconfigurable components
- Erected by 4 people in 4 hours
 Can withstand 100 mph winds
- Can withstand 100 mpn wind
 High Packing Efficiency
- Can deploy on uneven ground
- Withstand the Antarctic winter
 Multiple cycle use
- Lighting/power/data acquisition
- Meet NSF building codes
 Meet NSF building codes

Antarctic Habitat Demonstrator Study Goals

Large Expandable Structures:

- Packing efficiency & shipping/handling survival
- Deployment operability in a gravitational environment and in polar gear (representing space suits)
- Adaptability to uneven and rugged surfaces representing the lunar surface
- Reconfigurability
- Ongoing Performance in a harsh environment
- Deployment with integrated electronics (power, lighting, sensors, etc.)
- Remote structural health monitoring over long periods of time
- Use of in-situ materials for shielding from radiation
- Lunar dust mitigation practices





How Do Prizes Benefit NASA?

- ➤ Increased Participation by New Sources of Innovation
- Leveraging of Tax-Payers' Dollars
- ➤ Innovative Technology Development to Meet NASA's Needs
- Increased Awareness of Science and Technology
- Hands-on Training for Future Workforce

Funded Centennial Challenge Competitions

Competition	Total	2006	2007	2008	2009	2010	2011
Astronaut Glove	\$1M		250	350	400		
Regolith Excavation	\$750 K		250	500			
Personal Air Vehicle	\$2M		250	300	400	500	550
Beam Power	\$2M	200	300	400	500	600	
Tether	\$2M	200	300	400	500	600	
Lunar Lander	\$2M	2,000					
MoonROx	\$1M	250	750				

And The Winner Is...

Centennial Challenges - NASA Technology Prizes

RECENT COMPETITIONS

Regolith Excavation August 2-3, 2008

Robotic devices to excavate simulated lunar soil.

Location: California Polytechnic State University, San Luis Obispo, CA 2008 Purse: \$750K.

Managed by: California Space Education & Workforce Institute.

25 teams registered from 15 different states.

NASA Technologies/Center Interest: ISRU & Robotics - JSC, GRC, KSC, CxPO

General Aviation Technology August 2-10, 2008

Safer, quieter & more efficient aircraft.

Location: Sonoma County Airport, Santa Rosa, CA.

2008 Purse: \$300K.

Managed by: Comparative Aircraft Flight Efficiency Foundation.

The event will provide a forum for discussions on creation of a future Green Aviation Prize - intended to lead to a zero-emission airplane.

NASA Technologies/Center Interest: Aeronautics, energy systems, structures - LaRC, DFRC, GRC, ARC

Centennial Challenges - NASA Technology Prizes

UPCOMING COMPETITIONS

Lunar Lander October 24-25, 2008

Reusable rocket vehicles simulating lunar takeoff and landing.

Location: Holloman Air Force Base, NM.

2008 Purse: \$2M.

Managed by: X PRIZE Foundation.

Near-winner from 2007 will return and other challengers are expected.

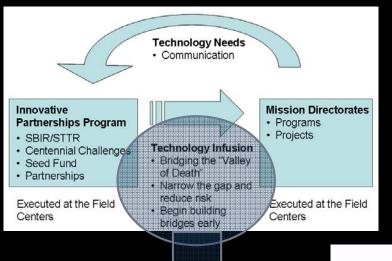
NASA Technologies/Center Interest: Propulsion, GN&C - CxPO-Altair, MSFC, JSC, GRC, SSC

Wireless power transmission and super-strength materials.

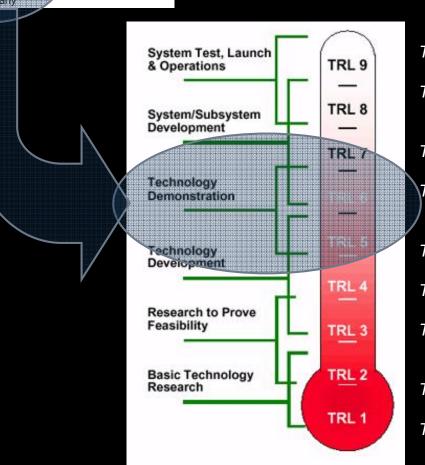
Location: Western US.

2008 Purse: \$2M for each.

Managed by: Spaceward Foundation.


2008 Power Beaming event will require devices to climb one kilometer 11 teams have entered.

NASA Technologies/Center Interest: Power systems, lasers, mechanisms, advanced materials - GRC, LaRC, CxPO



Technology Demonstration is critical to Infusion

- As a rule of thumb, projects like technology to be TRL-6 by PDR
- Technology Demonstration in relevant environments is critical

- TRL 9 Actual system "flight proven" through successful mission operations.
- TRL 8 Actual system completed and "flight qualified" through test and demonstration (ground or space).
- TRL 7 System prototype demonstration in a space environment.
- TRL 6 System/subsystem model or prototype demonstration in a *relevant* environment (ground or space).
- TRL 5 Component and/or breadboard validation in *relevant environment*.
- TRL 4 Component and/or breadboard validation in laboratory environment.
- TRL 3 Analytical and experimental critical function and/or characteristic proof-of concept.
- TRL 2 Technology concept and/or application formulated.
- TRL 1 Basic principles observed and reported.

Facilitated Access to the Space Environment for Technology Development and Training

Objectives:

- 1) Enable testing of emerging technologies in the space-environment such as zero and reduced-gravity conditions on parabolic aircraft flights.
- 2) Promote NASA use of commercial space-related services such as a commercially-operated parabolic aircraft.

- Modifications to the commercial aircraft to meet NASA requirements have been completed.
- Initial flight-weeks occurred August 25 and September 8.
- A broad call for proposals for flight weeks in FY09 will be issued in September for flights to occur in 2008 and 2009.

FAST

Facilitated Access to the Space Environment for Technology Development and Training

SBIR firms tested five new technologies Sept. 9-10:

- Pneumatic mining under lunar gravity conditions (Honeybee Robotics of New York)
- Aircraft sensor-logger operations (Metis Design Corporation of Cambridge, Mass.)
- Microgravity flight testing of self-deploying shells (Mevicon Inc. of Sunnyvale, Calif.)
- Virtual sensor test instrumentation operations (Mobitrum Corporation of Silver Spring, Md.)
- Nanofluid coolant testing (nanoComposix, Inc. of San Diego, Calif.)

Four days of flights were scheduled in September, but the approach of Hurricane Ike caused those scheduled Sept. 11-12 to be suspended. An effort will be made to reschedule the flights in the future.

FASTRACK experiment module.

Spectral Imaging Partnerships

NASA Investment

Tech Transfer/Partnerships

Airborne AVIRIS Imager

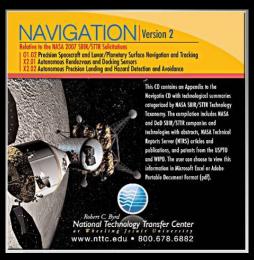
- NASA funded airborne whisk broom spectrometer
- Built in 1989 and operated through present

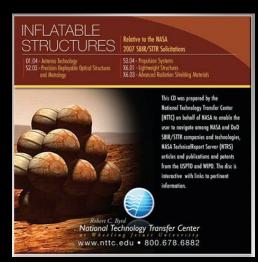
Airborne Compact Imager

- Partnership with another agency to develop a new airborne spectrometer (MaRS)
- MaRS uses Offner and push broom design for improved performance metrics (radiometric precision, uniformity, simplicity, reliability)
- Partner provides \$10M in funding to increase technology from TRL 3 to 7
- 24 month build
- Demonstrated in 2006

Airborne Compact Imager

- NASA selects advanced push broom, compact spectrometer (Moon Mineralology Mapper) for joint NASA/ISRO experiment
- Based on MaRS design
- 24 month build
- Launch in 2008


Finding Technologies


- There are many technologies potentially available to address needs, and one of the challenges for connecting technologies with potential applications is the difficulty in navigating and filtering all the available data.
 - Helping to make these connections is one of the key functions of the Technology Infusion Managers that IPP has at all ten field centers.
 - They are a great resource, and can be reached via http://www.ipp.nasa.gov/field_centers.htm.
- There are also many searchable databases available to help identify technologies of interest. Some of these are summarized below:
 - NASA TechFinder: http://technology.nasa.gov/
 - NASA TechBriefs: http://www.techbriefs.com/
 - NASA TechSource: https://sbir.gsfc.nasa.gov/sbir/search/fundedTechSearch.jsp
 - NASA SBIR/STTR Abstract Search : <u>http://sbir.gsfc.nasa.gov/SBIR/sbirabssearch.html</u>
 - Other databases: http://www.ipp.nasa.gov/databases.htm

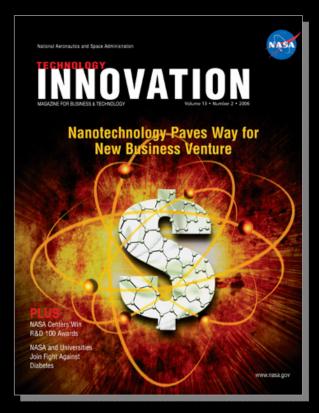
Finding Technologies

- IPP is working with the National Technology Transfer Center (NTTC) to develop a series of technology-specific resources for identifying available technology.
- These include relevant SBIR/STTR technology that has been funded by NASA or other agencies including DoD, and other sources of patented technology in the particular area of interest.

 The NTTC has developed several of these CDs for NASA, which IPP is making available to Mission Directorates, program/project staff at the field centers, prime contractors supporting NASA research and development activities, and other interested parties.

Outreach & Publications

http://www.techbriefs.com/


Electronics & Computers
Semiconductors & ICs
Mechanics
Information Sciences
Materials Software
Manufacturing & Prototyping
Machinery & Automation
Physical Sciences
Bio-Medical Test & Measurement

http://www.sti.nasa.gov/tto/ http://www.sti.nasa.gov/spinoff/ searchrecord

NASA @ Home & NASA City http://www.nasa.gov/city

http://ipp.nasa.gov/innovation/index.html

Visit us at ipp.nasa.gov

What Can IPP Provide?

- Funding or Leveraged Resources
 - NASA SBIR/STTR funds several hundred small businesses
 - IPP Seed Fund seeks partnerships to leverage resources with the private sector and other Federal labs
 - Centennial Challenges offers millions in purses
- Technology and Software
 - Access through licensing or other partnerships
- Access to Facilities and Test Capabilities
 - Access to NASA's facilities through partnerships
 - Technology demonstration opportunities through FAST
- Expertise
 - Access to NASA's technical expertise through partnerships
- Facilitation to enable partnerships
- Advocacy as a change agent to try new things

Interested in partnering with NASA?

Contact the relevant IPP Center Chief(s):

Center Name	<u>Email</u>	Phone
ARC Lisa Lockyer	<u>Lisa.L.Lockyer@nasa.gov</u>	(650) 604-0149
DFRC Gregory Poteat	Gregory.A.Poteat@nasa.gov	(661) 276-3872
GRC Kathy Needham	Kathleen.K.Needham@nasa.gov	(216) 433-2802
GSFC Nona Cheeks	Nona.K.Cheeks@nasa.gov	(301) 286-8504
JPL Andrew Gray	Gray@jpl.nasa.gov	(818) 354-4906
JSC Michele Brekke	Michele.A.Brekke@nasa.gov	(281) 483-4614
KSC Dave Makufka	David.R.Makufka@nasa.gov	(321) 867-6227
LaRC Brian Beaton	Brian.F.Beaton@nasa.gov	(757) 864-2192
MSFC Jim Dowdy	Jim.Dowdy@nasa.gov	(256) 544-7604
SSC Ramona Travis	Ramona.E.Travis@nasa.gov	(228) 688-1660

National Aeronautics and Space Administration

www.nasa.gov